深度学习的LSTM-GRU复合模型在水文模拟中的应用

2024-04-11 300 2.01M 0

在深度学习中,长短期记忆网络(LSTM)和门控循环单元(GRU)是两种模拟时间序列、循环神经网络(RNN)的主要基础结构,各有优缺点。为弥补二者的不足,提高河流流量的预测精度,建立了LSTM-GRU复合模型,并用于海河流域大清河水系白沟河流域流量的预测。基于东茨村水文站2006—2019年的日观测数据,以8个水文气象因子(气压、水温、相对湿度、降水量、日照、地温、风速、水位)的观测数据为输入,河流流量为输出,建立LSTM-GRU水文模型。为验证该模型的优势,将LSTM-GRU的模拟结果分别与LSTM和GRU的结果进行比较。结果表明,LSTM-GRU复合模型的稳定性和精确度明显优于单一的LSTM或GRU模型,为河流流量预测提供了一个更精准的方法。



您还没有登录,请登录后查看详情

举报收藏 0打赏 0评论 0
本类推荐
下载排行
网站首页  |  关于我们  |  联系方式  |  使用协议  |  隐私政策  |  版权隐私  |  网站地图  |  排名推广  |  广告服务  |  积分换礼  |  RSS订阅  |  蜀ICP备19012879号